Computer Vision

Computer Science Tripos Part 11
Dr Christopher Town

3. Mathematical operations for extracting structure from images.

Dr Chris Town

Fourier Analysis

Any image can be represented by a linear combination of
basis functions:

Floy) =Y ax¥i(e,y)

k
In the case of 2D Fourier analysis:

Ty, y) = expli(pe + 1))

exp(if) = cos(f) + i sin(6)

Dr Chris Town

Fourier Analysis

flz,y) = Z ay, exp(i(pre + vpy))
k
The transform finds a set of coefficients a, for every spatial
frequency and orientation in the 2D Fourier domain spanned
by the 2D frequency variables (uy,vi). These coefficients may
be computed by the Fourier Transform:

ay = / / exp(—i(prr + vpy) ) f (z. y)dady
xJy

F(p.v) :/ /exp(fz'(;z;‘..z@rJ/ky))f(.z'.y)d.z'dy
xJy

Each F(u,v) is a complex coefficient which defines the
magnitude and phase of a sinusoid basis function.
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Fourier Analysis

exp(if) = cos(f) + 2sin(6)

Real part - cosine wave, Imaginary part - sine wave

Complex exponentials are the Eigenfunctions of linear
systems

exp(ipyt) —> — Aexp(ipt)
The Fourier transform is a liner operation:

Flaf(@) +bg(r)) = aF (f(x)) + bF(g(x))
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Series expansion of transcendental functions

00 o
exp(f) = l+1_¥+2_r+?+“'+m+""
92 o4 06
cos(f) = 175 YT

00 0

1=

arithmetic

{0.1} represent
and e = 2.718... rey s analysis, since one way to define e is to compute the
limit of (1 + %)” as n — 00.
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7 represents geometry, i represents algebra,

flay) =3 apexp(i(ur + 1ny))
E
where the parameters ji; and 1 define the coordinates of the 2D Fourier do-
main. These (jr, 14:) coordinates are called vector spatial frequencies, and the
array of them must span the (g, ) Fourier plane in a uniform Cartesian lattice.

Tt is often useful to think of the (j, ) Fourier plane as resolved into polar coor-
dinates, where w = /2 + 112 is (scalar) spatial frequency and ¢ = tan™' (/)
is (scalar) orientation.
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The Discrete Fourier Transform

Fourier Transform

v]= gﬁf [x,y]e %(W”)

Inverse Fourier Transform (reconstruction)

] MAN- +m(x—;ﬁ%j
VESIE MN;;F[mn]e
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How to interpret a Fourier Spectrum

Low spatial frequencies

High
) ) spatial
fxin cycles/image frequencies

Log power spectrum

AlTorralba Dr Chris Town

The Fourier Transform coefficients are complex valued:

Flu,v]= ZZf[xy : (M N)
= R[uy, v]+iJ[u,v]

e,m[“M"fi) = codlz (ﬁw)) Sln(m(*w))

The Fourier Transform coefficients are complex:
Flu,v]= R[u,v]+iJ[u,v]
Real component:

M-1N-1

Rlu,v]= ZZf[x vl COS( (ux Vyj)

x=0 y=0
Imaginary component'

Ju,v] Nzif [x, V] sm( (“" LY))

cos(—8) = cos(0) sin(-0) = —sin(0) x=0 y=0
Dr Chris Town Dr Chris Town
Representation in terms of magnitude and phase The Discrete Fourier Transform
F[u, V] = R[u, V] +1L][u, V] The Fourier Transform of a real-valued image is
(i) conjugate-symmetric
= |F(u,v | e *
| ( ’ ) F[u,v] =F (—u,—v)
Magnitude spectrum Therefore the magnitude spectrum is even symmetric
2 2 *
[F )] =y R, V) +1G0,9) = F,v)F ,v) ()| =|F ()

F(u,v)F" (u,v) Power spectrum

Phase spectrum _
PECIUM  D(u,v) = tan 1(’ (, V))
R(u,v)
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and the phase spectrum is odd symmetric
CD(”) V) = —CD(—I/I,—V)

Note that the Fourier spectrum is often re-arranged for display
such that the zero-frequency component is in the centre.
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Stripes of the zebra create high energy waves generally
along the u-axis; grass pattern is fairly random causing ot S gl e
scattered low frequency energy
Yy
X
v
u
Source: Matlab 7 Documentation
Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth Dr Chris Town Dr Chris Town

orginal mage. g1+ F F) phaselF)

-- /
%

Histogram of ampitude vs frequency

Demo Matlab code

im = imread('waves.bmp');

F = ffr2¢im;

%fft2(X) returns the two-dimensional discrete Fourier transform (DFT) of X,
computed with a fast Fourier transform (FFT) algorithm. The result Y is the
same size as X.

F = fftshift(F);

%fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the zero- Surface plot of real(F)

frequency component to the center of the array. It is useful for visualizing a ;

%Fourier transform with the zero-frequency component in the middle of the : 1200
spectrum e i

1000
%angle(X): Phase angle

figure;

subplot(1,3,1),imagesc(im); colormap gray, axis image, axis off,
title('original image');

subplot(1,3,2),imshow(log(1+F.*conj(F)), [1); title('log(l+ F F*)');
subplot(1,3,3),imshow(angle(F), [1); title('phase(F)");

800

amplitude

600

400

imspect(im); %IMSPECT - Plots image amplitude spectrum averaged over all
orientations.
showsurf(real(F)); %SHOWSURF - shows parametric surface in a convenient way

200

0 o1 02 03 04 05 06 07 08
frequency
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oignalimage log(1s FF) phasa(F)

oiginal image g1+ F F)

phaselF)

og(1+ FF)
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DFT captures periodicity and directionality

http://www.cs.unm.edu/~brayer/vision/fourierhtml  Dr Chris Town

DFT captures periodicity and directionality

Z B WE

http://www.cs.unm.edu/~brayer/vision/fourier.html

Dr Chris Town

DFT captures periodicity and directionality

http://www.cs.unm.edu/~brayer/vision/fourierhtml  Dr Chris Town

Visualising individual Fourier components

v
To get some sense of what
basis elements look like, we
plot a basis element (or rather,
its real part) as a function of x,y
for some fixed u, v.

Dr Chris Town

We get a function that is
constant when (ux+vy) is
constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with this
frequency along this direction,
and it is constant perpendicular
to this direction.

v

Length of (u,v) is proportional to frequency and
inversely proportional to wavelength

Dr Chris Town

The Fourier coefficients
represent the original image as
a linear combination of such
sinusoids. The coefficients are
complex valued.

We can add a conjugate pair of
complex exponentials to obtain
a real-valued cosine function.

—in’(w +vy)

Dr Chris Town




Adding a conjugate pair of complex exponentials yields a real-
valued cosine

exp(if) = cos(f) + i sin(0)

Here u and v are
larger than in the
previous slide.

v
—im(ux+v,
exp(if) + exp(—if) e (i)
cos(f) = I E— . .
. . L]
(o) = S = exp(i) i) !
‘ —iﬂ'( x+vy)
f(ﬂ _ %PiEﬂ'st %(,—i2wst 3 N
= % [cos (27st) + isin (27st)] + % [cos (—2mst) + isin (—2mst)]
= 7 [cos (2mst) + i sin (2mst)] + 3 i sin (2mst)] 'eiﬂ( x+vy)
£ [cos (2mst)] + & [co
= cos (2mst)
Dr Chris Town ATorralba Dr Chris Town
And larger still...
Matlab demo...

im = imread('pat0.png');
%fourier reconstruction
freqcomp(im, 50);

freqcomp(im, 500, 0.01);

freqcomp displays:
* The image.
* The Fourier transform (spectrum) of the image with a conjugate

. % pair of Fourier components marked with red dots.
p*lﬁ(wﬁ‘vy) % * The sine wave basis function that corresponds to the Fourier
v % transform pair marked in the image above.
Y % * The reconstruction of the image generated from the sum of the sine
% wave basis functions considered so far.
figure; imspect(im, 500);
u %% IMSPECT - Plots image amplitude spectrum averaged over all orientations.
eiﬂ(ux+vy)
[
Dr Chris Town Dr Chris Town
2 6

#1:Range [0, 1]
Dims [256, 256]

ATorralba Dr Chris Town

#1:Range [0,1] #2: Range [1.89e-007, 0.228]
Dims [256, 256] Dims [255, 256]

ATorralba Dr Chris Town




18 50

#1:Range [0, 1] #2: Range [4.79e-007, 0.503] #1:Range [0, 1] #2: Range [8.58-006, 1.7]
Dims [258, 256] Dims [256, 256] Dims (256, 256] Dims (256, 256]

ATorralba Dr Chris Town ATorralba Dr Chris Town

82 136

#1:Range [0, 1] #2; Range [3.85-007, 221] #1: Range 0, 1] #2: Range [8.25¢-006, 3.48]
Dims [256, 256] Dims [258, 256] Dims [258, 256] Dimns [256, 256]

ATorralba Dr Chris Town ATorralba Dr Chris Town

282 538

#1:Range [0, 1] #2: Range [5.17¢-006, 8.4]
5 Dims [256, 256] Dims [258, 256]

#1: Range 0, 1] #2: Range [1 30e-005, 5.88]

Dims [255, 256] Dirns [256, 256]

ATorralba Dr Chris Town ATorralba Dr Chris Town




1088

1088

#1:Range [0, 1]
Dims [256, 256]

ATorralba

#2: Range [9.99¢-005,15]
Dims [258, 256]
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2094

ATorralba

2094

#1:Range [0.1]
Dims 256, 256]

#2: Range [8.7e-005, 19]
Dims [256, 256]

Dr Chris Town

4052.

8056.

#1:Range [0, 1] #2: Range [0.00032, 64.5)
#1:Range [0, 1] #2; Range [0.000556, 37.7) Dims [258, 256] Dims [256, 256]
Dims [256, 256] Dims [256, 256]
ATorralba Dr Chris Town ATorralba Dr Chris Town
15366 28743

#1:Range [0, 1]
Dims [256, 256]

ATorralba

#2:Range [0.000231,91.1]
Dims 256, 256]
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ATorralba

#:Range [0,1]
Dims [256, 256]

#2:Range [0.00109, 146]
Dims [266, 256]

Dr Chris Town




49190.

#1: Range 0, 1] #2:Range [0.00758, 24]
Dims [258, 256 Dims [256, 256]

ATorralba Dr Chris Town

65536.

65536.

#1: Range [05, 1.5] #2:Range [4 43s-015, 255]

Dims 256, 256] Dims [256, 256]

Dr Chris Town

Now, an analogous sequence of images, but selecting Fourier
componentsin descending order of magnitude.
B Figure 5 LEE

Fle Edt View Insert Took Desktop Whndow Hep o

DER& kAaMe €| 0B =0

#1:Range [0, 1]
Dirns [258, 256]

#2 Range [0.237, 0.545]
Dirns [256, 256]

AlTorralba Dr Chris Town

5

B Figure 6 LEE

Fle Edt View Insert Took Desktop Whndow Hep o

DER& kaame €| 08 =0

#1: Range [0, 1] #2: Range [0.106, 0 676]
Dims [258, 256] Dirns [256, 256]

Dr Chris Town

9

B Figure 7 LEE

Fle Edt View Insert Took Desktop Whndow Hep o

DER& kAaMe €| 0B =0

#1:Range [0, 1] #2: Range [5.04e-008, 0.788)
Dirns [258, 256] Dims [256, 256]

Dr Chris Town
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B Figure 8 LEE

Fle Edt View Insert Took Desktop Whndow Hep o

DER& kaame €| 08 =0

#1: Range [0, 1] #2: Range [2.62e-005, 0.934]
Dims [258, 256] Dims [256, 256]

Dr Chris Town




33

& Figure 9

Fle Edt View Insert Took Desktop Whndow Hep

DER&G K RANS £

o

#1: Range [0, 1] #2: Range [5.06e-005, 1.09]

Dirns [258, 256]

Dirns [256, 256]
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65

B Figure 10 M= ]

Fle Edt View Insert Took Desktop Whndow Hep

D& K RAMS

#1: Range [0, 1]
Dims [258, 256]

#2: Range [8.785-008, 1.27)
Dirns [256, 256]
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129

& Figure 11

Fle Edt View Insert Took Desktop Whndow Hep

D& K RAMS® [0

#1: Range [0, 1] #2: Range [4.78e-005, 1.27]

Dirns [258, 256]

o

Dirns [256, 256]
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257

B Figure 12 M=%

Fle Edt View Insert Took Desktop Whndow Hep

D& K RAMS

#1: Range [0, 1] #2: Range [4 26-005, 1.28]
Dims [258, 256] Dims [256, 256]

Dr Chris Town

513

& Figure 13

Fle Edt View Insert Took Desktop Window Hel

DER&G K RANS £

#1:Range [0, 1] #2: Range [1.76e-005, 1.26]

Dirns [258, 256]

Dirns [256, 256]
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B Figure 14 LE&E

Fle Edt View Insert Took Desktop

D& K RAMS

#1: Range [0, 1] #2: Range [2.245-005, 1.28]
Dims [258, 256] Dirns [256, 256]

Dr Chris Town




2049

& Figure 15

Fle Edt View Insert Took Desktop Whndow Hep

DER& kAaMe €| 0B =0

#1:Range [0, 1]
Dirns [258, 256]

Dins [256, 256]

#2: Range [0.000347, 1.27)

Dr Chris Town

4097

& Figure 16

Fle Edt View Insert Took Desktop Whndow Hep

D& K RAMS

50O

#1: Range [0, 1]
Dims [258, 256]

Dins [256, 256]

#2: Range [0.000592, 1.23)

o
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8193

& Figure 17

Fle Edt View Insert Took Desktop Whndow Hep

DER& kAaMe €| 0B =0

#1:Range [0, 1]
Dirns [258, 256]

8193

o

#2: Range [0.00208, 1.17)
Dims [256, 256]

Dr Chris Town

16385

& Figure 18

Fle Edt View Insert Took Desktop Whndow Hep

D& K RAMS 0B =0

#1: Range [0, 1]
Dims [258, 256]

#2: Range [0.000385, 1.1]
Dims [256, 256]

Dr Chris Town

32769

& Figure 19

Fle Edt View Insert Took Desktop Whndow Hep

DER& kAaMe €| 0B =0

#1 Range [0, 1]
Dirns [258, 256]

#2 Range [0.0246, 1.03]

Dirns [258, 258

Dr Chris Town

& Figure 20

Fle Edt View Insert Took Desktop

D& K RAMS

65536

#1: Range [05, 1.5]
Dims [258, 256]

#2 Range [0.028, 1]
Dirns [256, 256]

o

Dr Chris Town




* Fourier transform of a real
function is complex
— difficult to plot, visualize
— instead, we can think of
the phase and magnitude
of the transform

Fourier Transform

Magnitude Phase

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth
Dr Chris Town

ATorralba

This is the This is the

magnitude phase

transform transform

of the of the

cheetah pic cheetah pic
This is the
magnitude
transform
of the zebra
pic

r Chris Town

Dr Chris Town
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Reconstruction

This is the
phase with zebra phase,
transform .
of the zebra cheetah magnitude
pic
AlTorralba Dr Chris Town
Phase and Magnitude
Reconstruction )
. Image with cheetah phase
with cheetah phase, (and zebra magnitude)
zebra magnitude ;
Image with zebra phase
(and cheetah magnitude)
ATorralba Dr Chris Town Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth Dr Chris Town
. A simple texture descriptor
Randomizing the phase
Magnitude of the Fourier Transform
o R o o foxt [y
o A f) =20 p)e 7
. o
Magnitude of the Fourier Transform encodes unlocalised information
about dominant orientations and scales in the image.
ATorralba Dr Chris Town ATorralba Dr Chris Town
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Statistics of Scene Categories

Natural environments
e
&
-
i Y

Spectral signature of natural environments

Man-made environments

-

Spectral signature of man-made environments

4 D)
-
y o0
- " 4 -
- 27, - -
_—v frred ey e .
- Ay p 74

Oliva etal (99), Oliva & Torralba (01) Look at Mumford’s work farGhoiddlewn

Fourier image enhancement

The Image Processing Handbook, chapter 4. CRC Press, 1992

Dr Chris Town

Shift Theorem|: Shifting the original pattern in (., y) by some 2D displace-
ment («, 4) merely multiplies its 2DFT by exp(—i(ap + r)). Thus the
2DFT of the shifted pattern f(z —a,y—3) is: F(u,v)exp(—i(ap+ 5v)).

[IPractical Application: The power spectrum of any isolated pattern is thus
translation-invariant: it does not depend on where the pattern is located
within the image, and so you don’t have to find it first. The power spec-
trum is defined as the product of the pattern’s 2DFT., F(pu,v), times its
complex conjugate, F*(y, ), which just requires that the sign () of the
imaginary part of F(p, v) gets reversed. You can easily see that the power
spectrum of the shifted pattern f(z — o,y — ), namely:

exp(—i(ap+ Bv))F(p, v) exp(i(ap + Br)) F*(u,v)

is equal to the power spectrum of the original unshifted pattern, namely:
F(p, ) F*(pe, ). Thus the power spectrum is translation-invariant.

Dr Chris Town

originalimage logl1+ F ). phasalF)

original image logi1+ F ).

phase(F)

Dr Chris Town

: It the size of the original pattern f(z,y) changes

(shrinks/expands), say by a factor « in the z-direction, and by a factor
z, By). then the 2DFT of the pattern,
F(p.v), also changes (expands/shrinks) by the reciprocal of those factors

and with similarly scaled amplitude. Tt becomes: == F(£ 1)
! et a5

5 in the y-direction, becoming f(a

g1+ F )

pracar)

oot g

Dr Chris Town

: If the original pattern f(z,y) rotates through some
angle 6, becoming f(x cos(@)+ysin(f), —zsin(#)+y cos()), then its 2DFT
F(p, v) also just rotates through the same angle. It becomes: F'(pcos(0)+
vsin(f), —psin(0) + v cos(0)).

oot g

g1+ F ) pracar)
4

Dr Chris Town
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[Practical Application: Size- and orientation-invariant pattern represen-
tations can be constructed by these relationships. Specifically, if the
Fourier domain (g, ) is now mapped into log-polar coordinates (r,6)
where r = log(v/p2 +12) and @ = tan~'(v/u), then any dilation (size
change) in the original pattern becomes simply a translation along the
r-coordinate; and any rotation of the original pattern becomes simply a

translation along the orthogonal #-coordinate in this log-polar Fourier do-
main. But we saw earlier that translations are made immaterial by taking
a power spectrum, and so these effects of dilation and rotation of the pat-
tern are eliminated in such a representation.

Combined with the translation-invariant property of the power spectrum,
we now see how 1t becomes possible to represent patterns in a manner
that is independent of their position in the image, their orientation, and
their size (1.e. the Poincaré group of transformations).

Dr Chris Town

Convolution Theorem]: Let function f(z,y) have 2DFT F(u,v), and let
function g(z,y) have 2DFT G(p,v). The convolution of f(z,y) with
g(x.y), which is denoted f % g, combines these two functions to gener-

ate a third function h(z,y), whose value at location (z,y) is equal to
the integral of the product of functions f and g after one is flipped and
undergoes a relative shift by amount (z,y):

h(z,y) = //f(a. B)g(x — o,y — B)dadf 9)
alp

The Convolution Theorem states that convolving two functions f(z,y)
and g(z,y) together in the image domain, simply multiplies their two
2DFT’s together in the 2D Fourier domain:

H(p,v)=F(p,v)G(p, v) (10)

where H (1, ) 1s the 2DFT of the desired result h(z, y).

Dr Chris Town

Correlation Filtering

k k
Gli,jl= >, > Hlu,v]F[i+ u,j+ v]

u=—kv=—k

+ This is called cross-correlation, denoted G = H ® F'
+ Filtering an image
— Replace each pixel by a ; 3 5
weighted combination of H
its neighbors. B 4
— The filter “kernel” or “mask” F
is the prescription for the
weights in the linear D)
combination.

Slide credit; K. Grauman Dr Chris Town

Convolution

k k

u=—kv=—k
* Convolution:
— Flip the filter in both dimensions (bottom to top,
right to left)
— Then apply cross-correlation

G=HxF VHE(O'OJ

[ 1

(N.N)

Slide credit; K. Grauman Dr Chris Town

Convolution vs. Correlation

* Correlation Matlab:
k k filter2
Gli,jl= . S Hlu,0]F[i +u,j+ v] infilter
u=—kv=—k
G=HQ®F
. Convolut|on Note the difference!
ko k
Gli.jl = _Z _Z ‘H[u. AFli—wj—v]
u=—kov=—k conv?
G=HxF

* Note
— If H[-u,-v] = H[u,v], then correlation = convolution.

| Slidecredit:K. Grauman Dr Chris Town

Shift Invariant Linear System

¢ Shift invariant:

— Operator behaves the same everywhere, i.e. the value of
the output depends on the pattern in the image
neighborhood, not the position of the neighborhood.

* Linear:
— Superposition:h * (fl + f2) =(h * f1) + (h * f2)
— Scaling: h* (kf)y=k(h*f)

| Slidecredit:K. Grauman Dr Chris Town
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Properties of convolution

* Linear & shift invariant
* Commutative:

f*g=g*f
* Associative

(f*g)*h=Ff*(g*h)
* |dentity:

unitimpulsee=1...,0,0,1,0,0,..]. f*e=f
* Differentiation:
i*

dx 8

9 _
g(f 8)

Dr Chris Town

result(i, j) = ZZ kernel(m, n)- image(i —m, j —n)

m n

int i, j, m, n, sum, imageliend] [jend],
kernel [mend] [nend], result [iend] [jend];

for (i = mend; i < iend; i++) {
for (j = nend; j < jend; j++) {
sum = 0;
for (m = 0; m < mend; m++) {
for (n =0; n < nend; n++ ) {
sum += kernel[m] [n] * image[i-m] [j-n];

¥

result[il [j1 = sum/(mend+*nend);

Dr Chris Town

[Differentiation Theorem| Computing the derivatives of an image f(z.y)

is equivalent to multiplying its 2DFT., F(u, v). by the corresponding fre-
quency coordinate raised to a power equal to the order of differentiation:

N L BN :
( ) < )fu._l,)gr(w)m(f,/)np(#,,,) (11)

0z) \dy

A particularly useful implication of this theorem is that isotropic differen-
tiation, which treats all directions equally (for which the lowest possible
order of differentiation is 2nd-order, known as the Laplacian operator V?2)
is equivalent simply to multiplying the 2DFT of the image by a paraboloid:

a2 02
ox? Oy

V2 f(r.y) = ( ) Fa,y) B (24 ) F(pr)  (12)

Practical Application: Multi-Resolution Edge Detection.

Dr Chris Town

For kernels smaller or equal to 5x5, FFT followed by
multiplication is generally faster than explicit
convolution

Dr Chris Town
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